wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral sinθsin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+61-cos2θdθ (where c is a constant of integration)


A

11892sin6θ3sin4θ6sin2θ32+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

1181118sin2θ+9sin4θ2sin6θ32+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

1181118cos2θ+9cos4θ2cos6θ32+c

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

11892cos6θ3cos4θ6cos2θ32+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

1181118cos2θ+9cos4θ2cos6θ32+c


Explanation for the correct option:

Step 1. Reduction of the integration by substitution

Given:sinθsin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+61-cos2θdθ

=sinθ2sinθcosθ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+62sin2θdθsin2θ=2sinθcosθ&1-cos2θ=2sin2θ=sinθ2sinθcosθ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+62sin2θdθ

Let sinθ=t

cosθdθ=dt

=(t6+t4+t2)2t4+3t2+6dt=(t5+t3+t)2t6+3t4+6t2dt

Step 2. Further reduction of the integration by substitution

(t5+t3+t)2t6+3t4+6t2dt

Let 2t6+3t4+6t2=z

12(t5+t3+t)dt=dz

=112zdz

=118z32+c [Where c is a constant of integration]

Step 3. Substitute the value

118z32+c

=118(2t6+3t4+6t2)32+c=1182sin6θ+3sin4θ+6sin2θ32+c=118sin2θ2sin2θ2+3sin2θ+632+c=1181-cos2θ21-cos2θ2+31-cos2θ+632+c=1181-cos2θ21+cos4θ-2cos2θ+31-cos2θ+632+c=1181-cos2θ2+2cos4θ-4cos2θ+3-3cos2θ+632+c=1181-cos2θ2cos4θ-7cos2θ+1132+c=1182cos4θ-7cos2θ+11-2cos6θ+7cos4θ-11cos2θ32+c=1181118cos2θ+9cos4θ2cos6θ32+c

Hence, option (C) is the correct answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiation
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon