wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral 0x1+x1+x2 dx is

(a) π2

(b) π4

(c) π6

(d) π3

Open in App
Solution

b π4

We have,I=0x1+x1+x2 dxPutting x=tan θdx=sec2θ dθWhen x0 ; θ0and x ; θπ2Now, integral becomes

I=0π2tan θ1+tan θ sec2θ sec2θ dθ=0π2tan θ1+tan θ dθ=0π2sin θcos θ1+sin θcos θdθI=0π2sin θsin θ+cos θdθ .....1I=0π2sinπ2-θsinπ2-θ+cosπ2-θdθ 0afxdx=0afa-xdxI=0π2cos θcos θ+sin θdθI=0π2cosθsinθ+cosθdθ .....2

Adding 1 and 2, we get2I=0π2sinθ+cosθsinθ+cosθ dθ2I=0π2dθ2I=π2I=π40x1+x1+x2 dx=π4





flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon