The correct option is B x−5ln|x−2|+10ln|x−3|+C
Here the integrand x2+1x2−5x+6 is not proper rational function, so dividing them, we get
x2+1x2−5x+6=1+5x−5x2−5x+6=1+5x−5(x−2)(x−3)
Let
5x−5(x−2)(x−3)=Ax−2+Bx−3⇒5x−5=A(x−3)+B(x−2)
Equating the coefficients of x and constant terms on both sides, we get
A+B=53A+2B=5
Solving these equations, we get
A=−5, B=10
Thus,
x2+1x2−5x+6=1−5x−2+10x−3
Therefore,
∫x2+1x2−5x+6dx=∫dx−5∫1x−2dx+10∫dxx−3=x−5ln|x−2|+10ln|x−3|+C