The correct option is A 15log|x−1|−110log|x2+4|+25tan−1x2+C
Given ∫x(x−1)(x2+4)dx
Let x(x−1)(x2+4)=Ax−1+Bx+Cx2+4⋯(1)
⇒x=A(x2+4)+(Bx+C)(x−1)⋯(2)
Putting x=1 in equation (2), we get 1=5A
Putting x=0 in equation (2), we get 0=4A−C
Putting x=−1 in equation (2), we get −1=5A+2B−2C
Solving these equations, we obtain A=15,B=−15 and C=45
Substituting the values of A,B and C in equation (1), we obtain
x(x−1)(x2+4)=15(x−1)+−15x+45x2+4
=15(x−1)−15(x−4)(x2+4)
⇒I=15∫1x−1dx−15∫x−4x2+4dx
⇒I=15∫1x−1dx−110∫2xx2+4dx+45∫1x2+4dx
⇒I=15log|x−1|−110log|x2+4|+45×12tan−1x2+C
∴I=15log|x−1|−110log|x2+4|+25tan−1x2+C