The value of the integral I=2014∫1/2014tan−1xxdx is
A
π4log2014
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2log2014
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
πlog2014
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12log2014
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bπ2log2014 I=2014∫1/2014tan−1xxdx......(1) Let x=1t⇒dx=−dtt2⇒I=1/2014∫2014tan−1(1t)(1t)(−1t2)dt⇒I=−1/2014∫2014cot−1ttdt⇒I=2014∫1/2014cot−1ttdt......(2)
from (1)+(2) ⇒2I=2014∫1/2014tan−1t+cot−1ttdt⇒2I=2014∫1/2014π2tdt⇒I=π4[logt]20141/2014⇒I=π4[log2014−log12014]⇒I=π4(2log2014)=π2log2014