The correct option is D none of these
Let I=∫30dx√x+1+√5x+1=∫30√x+1−√5x+1−4xdx=I1+I2
Where I1=−14∫30√x+1xdx
Put x+1=t2⇒dx=2tdt
I1=−14∫212t2t2−1dt=−12∫21(−12(t+1)+12(t−1)+1)dt
=14[log(t+1)]21−14[log(t−1)]21+12[t]21
And I2=14∫30√5x+1xdx
Put 5x+1=u2
I2=110∫41u21+u2du=12∫(−12(u+1)+12(u−1)+1)du
=−14[log(u+1)]41+14[log(u−1)]41+14[u]41