The correct option is C π4√2
Orl putting x=sinθ ,we get dx=cosθdθ
Integral (without limits)=∫cosθdθ(1+sin2θ)(cosθ)
=∫dθ1+sin2θ=∫ cosec2θdθ2+cot2
=∫−dt2+t2 where t=cotθ
=−1√2tan−1t√2
=−1√2tan−1cotθ√2
=−1√2tan−11√2(√1−x2x)
∴ Definite integral =−1√2tan−11+1√2tan−1∞
=−π4√2+π2√2=π4√2