The correct option is C π2√2
I=∫∞01x4+1dx=∫∞0⎛⎜⎝√2x−24(−x2+√2x−1)+√2x+24(x2+√2x+1)⎞⎟⎠dx=14∫√2x+2x2+√2x+1dx+14∫√2x−2−x2+√2x−1dx=14√2∫√2+2xx2+√2x+1dx+14∫1x2+√2x+1dx+14∫√2x−2−x2+√2x−1dx
Let I1=14√2∫√2+2xx2+√2x+1dx
Substituting t=x2+√2x+1⇒dt=(2x+√2)dx, we get
I1=14√2∫1tdt=logt4√2=log(x2+√2x+1)4√2
Now let I2=14∫1x2+√2x+1dx
Substituting t=x+1√2⇒dt=dx, we get
I2=14∫1t2+12dt=14∫22t2+1=tan−1(√2x+12√2)
And let I3=14∫√2x−2−x2+√2x−1dx
=14∫⎛⎜⎝√2x−2√2(−x2+√2x−1)−1−x2+√2x−1⎞⎟⎠dx=−log(−x2+√2x−1)4√2−tan(1−√2x)2√2
Therefore resubstituting I=I1+I2+I3
∫∞01x4+1dx=⎡⎢⎣log(x2+√2x+1)4√2+tan−1(√2x+12√2)−log(−x2+√2x−1)4√2−tan(1−√2x)2√2⎤⎥⎦∞0=π2√2