The correct option is D 2(1−e−1)
Let I=∫1−1{x2013e|x|(x2+cosx)+1e|x|}dx
⇒ I=∫1−1x2013e|x|(x2+cosx)dx+∫1−11e|x|dx
Here x2013e|x|(x2cosx) is an odd function
and 1e|x| is even function
∵∫a−af(x)dx={2∫a0f(x)dx;f(x)iseven0,f(x)isodd
∴I=0+2∫10e−xdx=−2(e−x)10=−2(e−11)
=2(1−e−1)