wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral
+11{x2013e|x|(x2+cosx)+1e|x|}dx is equal to

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1e1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2e1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2(1e1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 2(1e1)

Using the definite integral property;

baf(x)dx=baf(a+bx)dx

I=11{x2013e|x|(x2+cosx)+1e|x|}dx...eqn1

Using the above mentioned property;

I=11⎪ ⎪⎪ ⎪(x)2013e|x|((x)2+cos(x))+1e|x|⎪ ⎪⎪ ⎪dxI=11{x2013e|x|(x2+cosx)+1e|x|}dx...eqn2

Adding eqn1 and eqn2;

2I=11{x2013e|x|(x2+cosx)+1e|x|}dx+11{x2013e|x|(x2+cosx)+1e|x|}dx2I=11{x2013e|x|(x2+cosx)+1e|x|+x2013e|x|(x2+cosx)+1e|x|}dx2I=11{2e|x|}dxI=11{1e|x|}dx=210{1ex}dxI=210exdx=2[ex]10=2[11e].


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon