The value of the integral ∫1/2−1/2cosx.log(1+x1−x)dx is
=∫1/2−1/2cosxlog(1+x1−x)dx I=∫−1/2−1/2cos(−x)log(1−x1+x)dx =∫−1/2−1/2cosxlog(1−x1+x)dx 2I=∫1/2−1/20dx I=0