The correct option is D x2+ln|x|−34ln|1−2x|+C
It can be seen that the given integrand is not a proper rational expression, therefore
1−x2x(1−2x)=1−x2x−2x2=12[(x−2x2)+(2−x)x−2x2]=12+12[2−xx(1−2x)]
Let
2−xx(1−2x)=Ax+B(1−2x)⇒(2−x)=A(1−2x)+Bx⋯(1)
Equating the coefficients of x and constant term, we obtain
−2A+B=−1A=2⇒B=3
Therefore,
2−xx(1−2x)=2x+31−2x
Substituting in equation (1), we obtain
1−x2x(1−2x)=12+12[2x+3(1−2x)]⇒∫1−x2x(1−2x)dx =∫[12+12(2x+3(1−2x))]dx =x2+ln|x|+32(−2)ln|1−2x|+C =x2+ln|x|−34ln|1−2x|+C
Where C is an arbitary constant.