The correct option is C 12ln∣∣∣x2+1x2+3∣∣∣+C
2x(x2+1)(x2+3)
Let x2=t⇒2xdx=dt
∴I=∫2x(x2+1)(x2+3)dx =∫dt(t+1)(t+3)⋯(1)
Let 1(t+1)(t+3)=A(t+1)+B(t+3)
1=A(t+3)+B(t+1)⋯(2)
Equating the coefficients of t and constant, we obtain
A+B=0 and 3A+B=1
On solving, we obtain
A=12 and B=−12
∴1(t+1)(t+3)=12(t+1)−12(t+3)⇒I=∫[12(t+1)−12(t+3)]dt =12ln|(t+1)|−12ln|t+3|+C =12ln∣∣∣t+1t+3∣∣∣+C =12ln∣∣∣x2+1x2+3∣∣∣+C