The value of the integral ∫3x−1(x+2)2dx is
(where C is an arbitrary constant)
Open in App
Solution
Let 3x−1(x+2)2=A(x+2)+B(x+2)2 ⇒3x−1=A(x+2)+B
Equating the coefficient of x and constant term, we obtain A=32A+B=−1⇒B=−7∴3x−1(x+2)2=3(x+2)−7(x+2)2⇒∫3x−1(x+2)2dx=3∫1(x+2)dx−7∫1(x+2)2dx=3ln|x+2|+7(x+2)+C