The correct option is C 12ln∣∣∣x+1x−1∣∣∣−4(x−1)+C
3x+5x3−x2−x+1=3x+5(x−1)2(x+1)
Let
3x+5(x−1)2(x+1)=A(x−1)+B(x−1)2+C(x+1)⇒3x+5=A(x−1)(x+1)+B(x+1)+C(x−1)2⇒3x+5=A(x2−1)+B(x+1)+C(x2+1−2x)⋯(1)
Equating the coefficients of x2,x and constant term, we obtain
A+C=0B−2C=3−A+B+C=5
On solving, we obtain
B=4, A=−12, C=123x+5(x−1)2(x+1)=−12(x−1)+4(x−1)2+12(x+1)∴∫3x+5(x−1)2(x+1)dx=−12∫1x−1dx+4∫1(x−1)2dx+12∫1(x+1)dx=−12ln|x−1|+4(−1x−1)+12ln|x+1|+C=12ln∣∣∣x+1x−1∣∣∣−4(x−1)+C