The correct option is A 53ln|x+1|−52ln|x+2|+56ln|x−2|+m
5x(x+1)(x2−4)=5x(x+1)(x+2)(x−2)
Let
5x(x+1)(x+2)(x−2)=A(x+1)+B(x+2)+C(x−2)⇒5x=A(x+2)(x−2)+B(x+1)(x−2)+C(x+1)(x+2)⋯(1)
By putting x=−1,x=−2 and x=2 and on solving, we obtain:
A=53, B=−52, C=56∴5x(x+1)(x+2)(x−2)=53(x+1)−52(x+2)+56(x−2)⇒∫5x(x+1)(x2−4)dx =53∫1(x+1)dx−52∫1(x+2)dx+56∫1(x−2)dx =53ln|x+1|−52ln|x+2|+56ln|x−2|+m
Where m is an arbitrary constant.