Geometric Interpretation of Def.Int as Limit of Sum
The value of ...
Question
The value of the integral ∫cosxsinx+cosxdx is equal to
A
x+log|sinx+cosx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12[x+log|sinx+cosx|]+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
log|sinx+cosx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x2+log|sinx+cosx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
E
x+12log|sinx+cosx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B12[x+log|sinx+cosx|]+C Let l=∫cosxsinx+cosxdx =12∫2cosxsinx+cosxdx =12∫(sinx+cosx)+(cosx−sinx)(sinx+cosx)dx =12∫dx+12∫cosx−sinxsinx+cosx⋅dx =12x+12log|sinx+cosx|+C =12[x+log|sinx+cosx|]+C