The value of the integral ∫e2tan−1x(1+x)21+x2dx is equal to
A
xetan−1x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
xe2tan−1x+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2xetan−1x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2xe2tan−1x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bxe2tan−1x+c ∫e2tan−1x(1+x)21+x2dx
Putting 2tan−1x=t ⇒21+x2dx=dtI=12∫(1+tant2)2etdt=12∫et(2tant2+sec2t2)dt↓f(t)↓f′(t)=12etf(t)+c=12et⋅2tan(t2)+c=e2tan−1x⋅tan(2tan−1x2)+c=xe2tan−1x+c[∵tan(tan−1x)=x]