The value of the integral ∫sinθ.sin2θ(sin6θ+sin4θ+sin2θ)√2sin4θ+3sin2θ+61−cos2θdθ is (where c is a constant of integration)
A
118[9−2sin6θ−3sin4θ−6sin2θ]32+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
118[11−18sin2θ+9sin4θ−2sin6θ]32+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
118[11−18cos2θ+9cos4θ−2cos6θ]32+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
118[9−2cos6θ−3cos4θ−6cos2θ]32+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C118[11−18cos2θ+9cos4θ−2cos6θ]32+c ∫2sin2θcosθ(sin6θ+sin4θ+sin2θ)√2sin4θ+3sin2θ+62sin2θdθ
Let sinθ=t,cosθdθ=dt=∫(t6+t4+t2)√2t4+3t2+6dt=∫(t5+t3+t)√2t6+3t4+6t2dtLet2t6+3t4+6t2=z12(t5+t3+t)dt=dz=112∫√zdz=118z3/2+c=118[(2sin6θ+3sin4θ+6sin2θ)32+c]=118[(1−cos2θ){2(1−cos2θ)2+3−3cos2θ+6}]32+c=118[(1−cos2θ)(2cos4θ−7cos2θ+11)]32+c=118[−2cos6θ+9cos4θ−18cos2θ+11]32+c