wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral sinθ.sin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+61cos2θdθ is
(where c is a constant of integration)

A
118[92cos6θ3cos4θ6cos2θ]32+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
118[1118cos2θ+9cos4θ2cos6θ]32+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
118[92sin6θ3sin4θ6sin2θ]32+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
118[1118sin2θ+9sin4θ2sin6θ]32+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 118[1118cos2θ+9cos4θ2cos6θ]32+c
2sin2θcosθ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+62sin2θdθ

Let sinθ=t,cosθ dθ=dt=(t6+t4+t2)2t4+3t2+6dt=(t5+t3+t)2t6+3t4+6t2dtLet 2t6+3t4+6t2=z12(t5+t3+t)dt=dz=112zdz=118z3/2+c=118[(2sin6θ+3sin4θ+6sin2θ)32+c]=118[(1cos2θ){2(1cos2θ)2+33cos2θ+6}]32+c=118[(1cos2θ)(2cos4θ7cos2θ+11)]32+c=118[2cos6θ+9cos4θ18cos2θ+11]32+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon