The correct option is C x+2√3tan−1x√3−3tan−1x2+C
(x2+1)(x2+2)(x2+3)(x2+4)=1−4x2+10(x2+3)(x2+4)
Let x2=t
(x2+1)(x2+2)(x2+3)(x2+4)=1−4t+10(t+3)(t+4)
Now, assuming
4t+10(t+3)(t+4)=At+3+Bt+4⇒4t+10=A(t+4)+B(t+3)
Equating the coefficients of t and constant, we obtain
A+B=44A+3B=10⇒A=−2; B=6
Now,
⇒1−4t+10(t+3)(t+4)=1+2t+3−6t+4⇒∫(x2+1)(x2+2)(x2+3)(x2+4)dx =∫[1+2(x2+3)−6(x2+4)]dx =∫⎡⎢
⎢
⎢⎣1+2x2+(√3)2−6x2+22⎤⎥
⎥
⎥⎦dx =x+2(1√3tan−1x√3)−6(12tan−1x2)+C =x+2√3tan−1x√3−3tan−1x2+C