The correct option is B 35ln|x+2|+15ln|x2+1|+15tan−1x+m
x2+x+1(x2+1)(x+2)=Ax+2+Bx+C(x2+1)
Therefore,
x2+x+1=A(x2+1)+(Bx+C)(x+2)
Equating the coefficients of x2,x and of constant term of both sides, we get
A+B=12B+C=1A+2C=1
Solving these equations, we get
A=35,B=25,C=15
Now,
x2+x+1(x2+1)(x+2)=35(x+2)+15(2x+1x2+1)
Therefore,
∫x2+x+1(x2+1)(x+2)dx=35∫dxx+2+15∫2xx2+1dx+15∫1x2+1dx
=35ln|x+2|+15ln|x2+1|+15tan−1x+m