The correct option is B 29ln∣∣∣x−1x+2∣∣∣−13(x−1)+m
Let x(x−1)2(x+2)=A(x−1)+B(x−1)2+C(x+2)
x=A(x−1)(x+2)+B(x+2)+C(x−1)2
By putting x=1;x=−2 and x=0, we obtain
A=29, B=13, C=−29∴x(x−1)2(x+2)=29(x−1)+13(x−1)2−29(x+2)⇒∫x(x−1)2(x+2)dx =29∫1(x−1)dx+13∫1(x−1)2dx−29∫1(x+2)dx =29ln|x−1|+13(−1x−1)−29ln|x+2|+m =29ln∣∣∣x−1x+2∣∣∣−13(x−1)+m
Where m is an arbitrary constant.