The correct option is C 12ln|x−1|−14ln|x2+1|+12tan−1x+m
Let x(x2+1)(x−1)=Ax+B(x2+1)+C(x−1)⋯(1)
x=(Ax+B)(x−1)+C(x2+1)⇒x=Ax2−Ax+Bx−B+Cx2+C
Equating the coefficients of x2,x and constant term, we obtain
A+C=0
−A+B=1
−B+C=0
On solving these equations, we obtain
A=−12,B=12,C=12
From equation (1), we obtain
x(x2+1)(x−1)=(−12x+12)x2+1+12(x−1)
Now,
⇒∫x(x2+1)(x−1)dx =−12∫xx2+1dx+12∫1x2+1+12∫1x−1dx =−14∫2xx2+1dx+12tan−1x+12log|x−1|+C
Considering ∫2xx2+1dx
Let (x2+1)=t⇒2x dx=dt
⇒∫2xx2+1dx=∫dtt=log|t|=log|x2+1|
Therefore,
∫x(x2+1)(x−1)dx=−14ln|x2+1|+12tan−1x+12ln|x−1|+m=12ln|x−1|−14ln|x2+1|+12tan−1x+m
Where m is an arbitary constant.