The correct option is A 0
WehaveI=∫−3π45π4(sinx+cosxex−+1)∫baf(x)dx=∫baf(a+b−x)dx∫−3π45π4sin(π2−x)+cos(π2−x)eπ4+1dx=∫−3π45π4sinx+cosx(ex−π4)ex−π4+1=1again2I=∫−3π45π4(sinx+cosx)dxI=12∫−3π45π4sinxdx+12∫−3π45π4cosxdx=12[−cosx]−3π45π4+12[sinx]−3π45π4=12(0+0)=0Hence,optionAisthecorrectanswer.