The value of the integral
∫π2−π2(x2+lnπ+xπ−x)cosxdx is :
∫π2−π2x2+ln(π+xπ−x)cosxdx
∫π2−π2x2cosxdx+∫π2−π2ln(π+xπ−x)cosxdx
=∫π2−π2x2cosxdx+0 ....... [∵ln(π+xπ−x)cosx is an odd function]
=2∫π20x2cosxdx ....... [∵x2cosx is an even function]
=2[x2sinx+2xcosx−2sinx]π20
=2[π24−2]=π22−4.