wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral 11loge(1x+1+x)dx is equal to

A
2loge2+π41
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
loge2+π21
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
12loge2+π432
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2loge2+π212
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B loge2+π21
I=11loge(1x+1+x)dx
Using property
If f(x) is an even function, then aaf(x)dx=2a0f(x)dx
=210loge(1x+1+x)(1)dx
=2[loge(1x+1+x)(x)]102101(1x+1+x)(121+x121x)x dx
=2(loge20)2210x1x1+x1x+1+x×11x2dx
=loge210x(1x1+x)21x1x×11x2dx
=loge210x1x+1+x21x22x×11x2dx
=loge2102x(11x2)2x×11x2dx
=loge2+10(11x21x2)dx
=loge2+[sin1xx]10
=loge2+[π210]
I=loge2+π21

flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon