The correct option is B loge2+π2−1
I=∫1−1loge(√1−x+√1+x)dx
Using property
If f(x) is an even function, then ∫a−af(x)dx=2∫a0f(x)dx
=2∫10loge(√1−x+√1+x)⋅(1)dx
=2[loge(√1−x+√1+x)⋅(x)]10−2∫101(√1−x+√1+x)⋅(12√1+x−12√1−x)⋅x dx
=2(loge√2−0)−22∫10x⋅√1−x−√1+x√1−x+√1+x×1√1−x2dx
=loge2−∫10x⋅(√1−x−√1+x)21−x−1−x×1√1−x2dx
=loge2−∫10x⋅1−x+1+x−2√1−x2−2x×1√1−x2dx
=loge2−∫102x(1−√1−x2)−2x×1√1−x2dx
=loge2+∫10(1−√1−x2√1−x2)dx
=loge2+[sin−1x−x]10
=loge2+[π2−1−0]
I=loge2+π2−1