The value of the integral 1+√52∫1x2+1x4−x2+1ln(1+x−1x)dx is (correct answer + 2, wrong answer - 0.50)
A
π8ln2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π4ln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2ln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2π3ln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ8ln2 Given : I=1+√52∫1x2+1x4−x2+1ln(1+x−1x)dx ⇒I=1+√52∫11+1x2x2−1+1x2ln(1+x−1x)dx
Assuming x−1x=t⇒(1+1x2)dx=dtx2+1x2−2=t2
When x=1⇒t=0,x=√5+12⇒t=1
⇒I=1∫0ln(1+t)t2+1dt Assuming t=tanθ⇒sec2θdθ=dt ⇒I=π/4∫0ln(1+tanθ)dθ⋯(1)⇒I=π/4∫0ln(1+tan(π4−θ))dθ⇒I=π/4∫0ln(21+tanθ)dθ⋯(2) Adding (1) and (2), we get ⇒2I=π4ln2∴I=π8ln2