The correct option is B 0
I=2∫−2sin2 x[xπ]+12dx
When x∈[−2,0]
−1<xπ<0⇒[xπ]=−1
When x∈[0,2]
0≤xπ<1⇒[xπ]=0
⇒I=0∫−2sin2x−12dx+2∫0sin2x12dx
⇒I=−20∫−2sin2x dx+22∫0sin2x dx
Replacing x by −x in the first integral, we get
I=−22∫0sin2x dx+22∫0sin2x dx
or, I=0