wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral dx3sinx+4cosx
(where C is integration constant)

Open in App
Solution

Given : dx3sinx+4cosx
Now, assuming
t=tanx2x=2tan1tdx=2dt1+t2sinx=2t1+t2, cosx=1t21+t2

Now, the integral becomes
dx3sinx+4cosx=2dt1+t232t1+t2+41t21+t2=2dt6t+44t2=24dt1(t264t)=12dt1(t264t+916916)=12dt1+916(t34)2=12dt(54)2(t34)2=121254ln∣ ∣ ∣ ∣54+t3454t+34∣ ∣ ∣ ∣+C=15ln∣ ∣ ∣12+t2t∣ ∣ ∣+C=15ln1+2t42t+C=15ln∣ ∣ ∣1+2tanx242tanx2∣ ∣ ∣+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Change of Variables
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon