Given : ∫dx3sinx+4cosx
Now, assuming
t=tanx2⇒x=2tan−1t⇒dx=2dt1+t2sinx=2t1+t2, cosx=1−t21+t2
Now, the integral becomes
∫dx3sinx+4cosx=∫2dt1+t23⋅2t1+t2+4⋅1−t21+t2=∫2dt6t+4−4t2=24∫dt1−(t2−64t)=12∫dt1−(t2−64t+916−916)=12∫dt1+916−(t−34)2=12∫dt(54)2−(t−34)2=12⋅12⋅54ln∣∣
∣
∣
∣∣54+t−3454−t+34∣∣
∣
∣
∣∣+C=15ln∣∣
∣
∣∣12+t2−t∣∣
∣
∣∣+C=15ln∣∣∣1+2t4−2t∣∣∣+C=15ln∣∣
∣
∣∣1+2tanx24−2tanx2∣∣
∣
∣∣+C