The correct option is C 38π
I=π/2∫−π/2sin4x(1+log(2+sinx2−sinx)) dx⋯(1)⇒I=π/2∫−π/2sin4(−x)(1+log(2+sin(−x)2−sin(−x))) dx⇒I=π/2∫−π/2sin4x(1+log(2−sinx2+sinx)) dx⇒I=π/2∫−π/2sin4x(1−log(2+sinx2−sinx)) dx⋯(2)
Adding (1) and (2),
⇒2I=π/2∫−π/22sin4x dx⇒I=π/2∫−π/2sin4x dx⇒I=2π/2∫0sin4x dx⋯(3)
Putting x→π2−x
⇒I=2π/2∫0cos4x dx⋯(4)
Adding (3) and (4),
⇒2I=2π/2∫0sin4x+cos4x dx⇒I=π/2∫0(sin2x+cos2x)2−2sin2xcos2x dx⇒I=π/2∫0(1)2−sin24x2 dx⇒I=π2−4π/8∫0sin24x2 dx
Putting x→π8−x
⇒I=π2−4π/8∫0cos24x2 dx⇒2I=π−4π/8∫012 dx⇒I=3π8