wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral 2ππ(x2+2)cosxx3dx is

A
(54π2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(14π2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
14π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
54π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (54π2)
Given Integral, I=2ππ(x2+2)cosxx3dx

I=2ππcosxxdx+2ππ2cosxx3dx

2ππ2cosxx3dx= 2ππ(2cosx)I(1x3)IIdx

We know that fI(x)fII(x)dx=fI(x).f(IIx)dxfI(x)(fII(x)dx)dx

From eq. (1) we can understand fI(x)=2cosx and fII(x)=1x3

2ππ(2cosx)I(1x3)IIdx= 2cosx.2ππ(1x3)dx2ππ(2sinx)(2ππ1x3dx)dx

2ππ2cosxx3dx= 2cosx(12x2)2ππ(2sinx)(12x2)dx

(cosxx2)2ππ(sinxx2)dx

(cosxx2)2ππsinx.(1x2)dx

Using the integration by parts formula again, fI(x)fII(x)dx=fI(x).2ππf(IIx)dxfI(x)(2ππfII(x)dx)dx

(cosxx2)(sinx.(1x)2ππcosx.(1x))dx

(cosxx2)+(sinxx)2ππ(cosxx)dx

Hence, 2ππ2cosxx3dx=(cosxx2)+(sinxx)2ππ(cosxx)dx

We know that I=2ππcosxxdx+2ππ2cosxx3dx

So now I=2ππcosxxdx + (cosxx2)+(sinxx)(cosxx)dx

I=(cosxx2)2ππ+(sinxx)2ππ

I=14π21π2+(00)

I=(54π2)

Hence correct answer is A.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Binomial Coefficients with Alternate Signs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon