Given Integral, I=∫2ππ(x2+2)cosxx3dx
→I=∫2ππcosxxdx+∫2ππ2cosxx3dx
→∫2ππ2cosxx3dx= ∫2ππ(2cosx)I(1x3)IIdx
We know that ∫fI(x)fII(x)dx=fI(x).∫f(IIx)dx−∫f′I(x)(∫fII(x)dx)dx
From eq. (1) we can understand fI(x)=2cosx and fII(x)=1x3
→ ∫2ππ(2cosx)I(1x3)IIdx= 2cosx.∫2ππ(1x3)dx−∫2ππ(−2sinx)(∫2ππ1x3dx)dx
→∫2ππ2cosxx3dx= 2cosx(−12x2)−∫2ππ(−2sinx)(−12x2)dx
⇒(−cosxx2)−∫2ππ(sinxx2)dx
⇒(−cosxx2)−∫2ππsinx.(1x2)dx
Using the integration by parts formula again, ∫fI(x)fII(x)dx=fI(x).∫2ππf(IIx)dx−∫f′I(x)(∫2ππfII(x)dx)dx
⇒(−cosxx2)−(sinx.(−1x)−∫2ππcosx.(−1x))dx
⇒(−cosxx2)+(sinxx)−∫2ππ(cosxx)dx
Hence, ∫2ππ2cosxx3dx=(−cosxx2)+(sinxx)−∫2ππ(cosxx)dx
We know that →I=∫2ππcosxxdx+∫2ππ2cosxx3dx
So now →I=∫2ππcosxxdx + (−cosxx2)+(sinxx)−∫(cosxx)dx
I=(−cosxx2)2ππ+(sinxx)2ππ
I=−14π2−1π2+(0−0)
I=−(54π2)
Hence correct answer is A.