The correct options are
A 2abtan−1ba(a>0,b>0)
B 2abtan−1ba(a<0,b<0)
C π2(a=1,b=1)
Let I=∫π/4−π/4dxa2cos2x+b2sin2x2∫π40dxa2cos2x+b2sin2x
Multiply numerator and denominator by sec2x
I=2∫π40sec2xdxa2+b2tan2x
Put tan2x=t, we get
I=2∫10dta2+b2t2
=[2abtan−1bta]10=2abtan−1ba