The correct option is D 2π
I=∫π−π(cosax−sinbx)2dx =∫π−πsin2bxdx−2∫π−π((cosax)(sinbx))dx+∫π−πcos2axdx
Let I=I1+I2+I3 ...(1)
Such that, I1=∫π−πsin2bxdx
Substituting bx=t⇒bdx=dt
We get, I1=1b∫πb−πbsin2tdt=1b∫πb−πb(12−12cos2t)dt
=1b[t2−sin2t4]πb−πb=π−sin(2πb)2b ...(2)
I2=−2∫π−π((cosax)(sinbx))dx
As (cosax)(sinbx) is an odd function,
I2=0 ...(3)
I3=∫π−πcos2axdx
Substituting, ax=t⇒adx=dt, we get
I3=1a∫πa−πacos2tdt=1a∫πa−πa(12cos2t+12)dt
=1a[t2+sin2t4]πa−πa=sin(2πa)2a+π ...(4)
Substituting (2), (3) and (4) in (1), we get
I=sin(2πa)2a−sin(2πb)2b+2π=0+0+2π=2π
Hence, option 'D' is the correct answer.