The value of the integral ∫cos3x+cos5xsin2x+sin4x dx is
A
sinx−6tan−1(sinx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sinx−2(sinx)−1+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinx−2(sinx)−1−6tan−1(sinx)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sinx−2(sinx)−1+5tan−1(sinx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Csinx−2(sinx)−1−6tan−1(sinx)+c Let I = ∫cos3x+cos5xsin2x+sin4xdx=∫(cos2x+cos4x)cosxsin2x(1+sin2x)dx=∫[1−sin2x+(1−sin2x)2]cosxsin2x(1+sin2x)dx=∫(2−3sin2x+sin4)cosxsin2x(1+sin2x)dxput sinx=t⇒cosxdx=dtI=∫2−3t2+t4t4+t2dt⇒I=∫(1+2t2−6t2+1)dt=t−2t−6tan−1(t)+c=sinx−2(sinx)−1−6tan−1(sinx)+c