CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

The value of the integral cos3x+cos5xsin2x+sin4x dx is

A
sin x6tan1(sin x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin x2(sin x)1+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin x2(sin x)16tan1(sin x)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin x2(sin x)1+5tan1(sin x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A sin x2(sin x)16tan1(sin x)+c
Let I = cos3x+cos5xsin2x+sin4xdx=(cos2x+cos4x)cosxsin2x(1+sin2x)dx=[1sin2x+(1sin2x)2]cosxsin2x(1+sin2x)dx=(23sin2x+sin4)cosxsin2x(1+sin2x)dxput sinx=tcosxdx=dtI=23t2+t4t4+t2dtI=(1+2t26t2+1)dt=t2t6tan1(t)+c=sinx2(sin x)16tan1(sinx)+c

flag
Suggest Corrections
thumbs-up
0
BNAT
mid-banner-image