The value of the integral ∫(x2+x)(x−8+2x−9)1/10 dx is
511(x2+2x)11/10+c
56(x+1)11/10+c
67(x+1)11/10+c
None of these
∫(x2+x)(x−8+2x−9)1/10dx=∫(x+1)(x2+2x)1/10dx Now put x2+2x=t⇒(x+1)dx=dt2 ⇒∫t1/10.dt2=12×1011t11/10=511t11/10+c ⇒511(x2+2x)11/10+c