The correct option is D 1+12log(35)
Put 5x+1=y2,x+1=t2. Then dx=15 2y dy, dx=2t dt
∫30 1√x+1+√5x+1dx=∫30√5x+1−√x+14xdx=14[∫30 √5x+1xdx−∫30√x+1xdx]
=14⎡⎣∫41 yy2−15.2y5dy−∫21tt2−1.2t dt⎤⎦=12[∫41 y2y2−1dy−∫21t2t2−1dt]
=12[∫41(1+1y2−1)dy−∫21(1+1t2−1)dt]
=12{[y+12 log∣∣y−1y+1∣∣]41−[t+12 log∣∣t−1t+1∣∣]41}
=12[4+12log(35)−1−2−12−log(13)+1]=12[2+12log 95]
=1+12log(35)