The correct option is B 20+1√2
=∫41 π40|cos x|dx=∫10π0|cos x|dx+=∫41 π410π|cos x|dx
=10∫π0|cos x|dx+∫10π+π410π|cos x|dx
[since |cos x| is a periodic cunction of period π ]
=10∫π0|cos x|dx+∫π40|cos x|dx
=10(∫π20 cos x dx−∫ππ2 cos x dx)+sin x∣∣∣π40
=10(sin x∣∣∣π20−sin x∣∣∣ππ2)+1√2
=10(1+1)+1√2=20+1√2