The correct option is A e
limx→0(xsinx)6x2 ⇒(1)∞ form
∴elimx→06x2(xsinx−1)
elimx→06x2(x−sinxsinx)
=elimx→06x2⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝x−(x−x33!+x55!.....)(x−x33!+x55!.....)⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
=elimx→06x2⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝(x33!−x55!.....)(x−x33!+x55!.....)⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
=elimx→06x3x3⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝(13!−x25!.....)⎛⎜
⎜⎝1−x23!+x45!.....⎞⎟
⎟⎠⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠=e63!=e1=e