The value of the limit limθ→0tan(πcos2θ)sin(2πsin2θ) is equal to
-12
-14
0
14
Explanation for the correct option
Given function is limθ→0tan(πcos2θ)sin(2πsin2θ)
=limθ→0tan(π(1-sin2θ)sin(2πsin2θ)[∵sin2θ+cos2θ=1]=limθ→0-tan(πsin2θ)sin(2πsin2θ)
Now, multiply both the numerator and denominator by 2πsin2θ, we get,
=limθ→0-tan(πsin2θ)sin(2πsin2θ)×2πsin2θ2πsin2θ=limθ→0-tan(πsin2θ)πsin2θ×2πsin2θ2sin(2πsin2θ)=limθ→0-tan(πsin2θ)πsin2θ×2πsin2θsin(2πsin2θ)×12=-12[∵limθ→0tanθθ=1,limθ→0sinθθ=1]
Hence, option(A) i.e. -12 is the correct answer.