The value of the limits, limx→0(sinx−x)2+1−cosx3x5sinx+(1−cosx)2(2x2−sinx2) is equal to
A
1945
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
49
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1925
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C49 limx→0(sinx−x)2+1−cosx3x5sinx+(1−cosx)2(2x2−sinx2) =limx→0x2(sinxx−1)2+2sin2x32x6sinxx+(2sin2x2)2x2(2−sinx2x2)…[∵cos2θ=1−2sin2θ] =limx→0x2(sinxx−1)2+2sin2x32x64x64x6sinxx+2x416sin4x2x416x2(2−sinx2x2) =limx→00+x62x6+x68