The value of the series (112)+(12+223)+(12+22+324)+..... is
n(n+1)(4n+5)36
n(n−1)(4n+5)6
n(n+1)(4n+2)3
None of these
nth term = 12+22+32+......+n2n+1⇒n(n+1)(2n+1)6(n+1)=16(2n2+n)Sum=∑nth term=16[2∑n2+∑n]=16[2(n)(n+1)(2n+1)6+n(n+1)2]=136n(n+1)[4n+2+3]=n(n+1)(4n+5)36