∞∑k=1∞∑n=1k2n+k=∞∑k=1∞∑n=1k2k⋅12n=∞∑k=1k2k(∞∑n=112n)⋯(1)
Now ∞∑n=112n is sum of infinite G.P. with a=12,r=12
∴∞∑n=112n=1/21−1/2=1
So (1) will be
=∞∑k=1k2k
Now let S∞=∞∑k=1k2k
∴S∞=12+222+323+⋯∞…(2)12S∞= 122+223+324+⋯∞…(3)
From (2)−(3)
12S∞=12+122+123+⋯∞=1/21−1/2=1⇒S∞=2
∴∞∑k=1∞∑n=1k2n+k=2