Find the value of the sum ∑n=113(in+in+1), where i=−1.
i
i−1
−i
0
Explanation for the correct option:
Find the required value.
Given:∑n=113(in+in+1)
∑n=113(in+in+1)=∑n=113(1+i)in
=(1+i)∑n=113in=(1+i)(i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13)=(1+i)(i−1−i+1+i−1−i+1+i−1−i+1+i)=(1+i)i=i+i2=i−1∵i2=-1
Therefore, the value of the sum ∑n=113(in+in+1) is i−1.
Hence, option (B) is the correct answer.
The value of the sum 13∑n=1(in+in+1) , where i = √−1 equals