The value of \theta for which θ=tan−1(2tan2θ)−12sin−1(3sin2θ5+4sin2θ)
θ=tan−1(2tan2θ)−12sin−1(6tanθ9+tan2θ)
=tan−1(2tan2θ)−12sin−1⎧⎨⎩2(13tanθ)1+(13tanθ)2⎫⎬⎭
=tan−1(2tan2θ)−12sin−1⎧⎨⎩2×13tan θ1+(13tan θ)2⎫⎬⎭
=tan−1(2tan2θ)−22tan−1(13tanθ)
tan−1(2tan2θ−13tanθ1+23tan3θ)
⇒tan θ=6 tan2θ−tanθ3+2tan3θ
⇒2tan4 θ−6tan2θ+4tan θ=0
⇒2tan(tan3θ−3tanθ+2)=0
⇒2tan(tan θ−1)2(tan θ+2)=0
⇒tanθ=0,−2,1
⇒θ=nπ,nπ+π4,nπ+tan−1(−2),nπ+π4