The value of θ lying between 0 and π2 and satisfying the equation-
∣∣
∣
∣∣1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sin4θsin2θcos2θ1+4sin4θ∣∣
∣
∣∣=0 are-
∣∣
∣
∣∣1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sin4θsin2θcos2θ1+4sin4θ∣∣
∣
∣∣=0
⇒R1→R1−R2,R2→R2−R3
⇒∣∣
∣
∣∣1−1001−1sin2θcos2θ1+4sin4θ∣∣
∣
∣∣=0
⇒1+4sin4θ+cos2θ+sin2θ=0
⇒sin4θ=−12
⇒sin4θ=sin(π+π6)orsin4θ=sin(2π−π6)
⇒4θ=7π6 or 4θ=11π6
⇒θ=7π24 or 11π24