The value of limx→0(1+x)1/3−(1−x)1/3xis
We have,
limx→0(1+x)13−(1−x)13x
Applying L’ Hospital rule and we get,
limx→013(1+x)13−1−13(1−x)13−1(−1)1
⇒limx→013(1+x)13−1−13(1−x)13−1(−1)
Taking limit and we get,
=13(1+0)13−1+13(1−0)13−1
=23
limx→0(1+x)13−(1−x)13x=