The value of limx→01x3∫x0tln(1+t)t4+4dt is
0
112
124
16
limx→01x3∫x0t ln(1+t)t4+4dt[00−form] Applying L' Hospital's rule, we get limx→0x ln(1+x)x4+43x2=limx→0ln(1+x)x.13(x4+4)=1.112=112