The value of limx→0⎡⎢
⎢
⎢
⎢
⎢⎣∫x20(sin√t)dtx3⎤⎥
⎥
⎥
⎥
⎥⎦ is
limx→0∫x20sin(√t)dtx3(00form)
Using L’Hospital’s rule
=limx→0(sin√x2)⋅2x3x2
=limx→0sin|x|⋅23x= Does not exist. (∴√x2=|x|)
∴limx→0sin|x|⋅23x=23
limx→0sin|x|⋅23x=−23
∴ Limit does not exist.